Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 586–599
DOI: https://doi.org/10.17377/semi.2017.14.050
(Mi semr807)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differentical equations, dynamical systems and optimal control

On crack propagations in elastic bodies with thin inclusions

A. M. Khludnevab, T. S. Popovac

a Lavrentyev Institute of Hydrodynamics, pr. Lavrent'eva, 15, 630090, Novosibirsk, Russia
b Novosibirsk State University, pr. Lavrentieva, 15, 630090, Novosibirsk, Russia
c North-Eastern Federal University, ul. Kulakovskogo, 48, 677000, Yakutsk, Russia
Full-text PDF (208 kB) Citations (1)
References:
Abstract: The paper concerns an analysis of a crack propagation phenomena for an elastic body with thin inclusions and cracks. In the frame of free boundary approach, we investigate a dependence of the solutions on a rigidity parameter of the inclusion. A passage to the limit is justified as the parameter goes to infinity. Derivatives of the energy functionals are found with respect to the crack length for the models considered with different rigidity parameters. The Griffith criterion is used to describe a crack propagation. In so doing, an optimal control problem is investigated with a rigidity parameter being a control function. A cost functional coincides with a derivative of the energy functional with respect to the crack length. A solution existence is proved.
Keywords: thin elastic inclusion, Timoshenko beam, semirigid inclusion, crack, delamination, nonpenetration boundary condition, optimal control.
Received April 10, 2017, published July 5, 2017
Bibliographic databases:
Document Type: Article
UDC: 517.958, 539.3
MSC: 35Q74, 35Q93
Language: English
Citation: A. M. Khludnev, T. S. Popova, “On crack propagations in elastic bodies with thin inclusions”, Sib. Èlektron. Mat. Izv., 14 (2017), 586–599
Citation in format AMSBIB
\Bibitem{KhlPop17}
\by A.~M.~Khludnev, T.~S.~Popova
\paper On crack propagations in elastic bodies with thin inclusions
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 586--599
\mathnet{http://mi.mathnet.ru/semr807}
\crossref{https://doi.org/10.17377/semi.2017.14.050}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407792200050}
Linking options:
  • https://www.mathnet.ru/eng/semr807
  • https://www.mathnet.ru/eng/semr/v14/p586
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :62
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024