Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 405–417
DOI: https://doi.org/10.17377/semi.2017.14.034
(Mi semr792)
 

Mathematical logic, algebra and number theory

On maximum orders of elements of simple orthogonal groups in characteristic 2

M. A. Grechkoseevaab, D. V. Lytkina

a Novosibirsk State University, ul. Pirogova, 1, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: We give exact formulas for the two largest orders of elements of the simple orthogonal group $\Omega_{2n}^\varepsilon(q)$, where $\varepsilon\in\{+,-\}$ and $q>2$ is even.
Keywords: maximum order of an element, simple orthogonal group.
Received October 27, 2016, published April 28, 2017
Bibliographic databases:
Document Type: Article
UDC: 512.5
MSC: 20D06
Language: English
Citation: M. A. Grechkoseeva, D. V. Lytkin, “On maximum orders of elements of simple orthogonal groups in characteristic 2”, Sib. Èlektron. Mat. Izv., 14 (2017), 405–417
Citation in format AMSBIB
\Bibitem{GreLyt17}
\by M.~A.~Grechkoseeva, D.~V.~Lytkin
\paper On maximum orders of elements of simple orthogonal groups in characteristic~2
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 405--417
\mathnet{http://mi.mathnet.ru/semr792}
\crossref{https://doi.org/10.17377/semi.2017.14.034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407792200037}
Linking options:
  • https://www.mathnet.ru/eng/semr792
  • https://www.mathnet.ru/eng/semr/v14/p405
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024