Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 264–273
DOI: https://doi.org/10.17377/semi.2017.14.024
(Mi semr783)
 

This article is cited in 2 scientific papers (total in 2 papers)

Real, complex and functional analysis

Multiple interpolation for Nevanlinna type spaces

E. G. Rodikova

Bryansk State University, str. Bezhitskaya, 14, 241036, Bryansk,Russia
Full-text PDF (165 kB) Citations (2)
References:
Abstract: In this paper we solve the multiple interpolation problem in the class of analytic functions in the unit disk with the Nevanlinna characteristic from $L^p$-spaces under the condition that interpolation nodes are contained in a finite union of Stolz angles and we describe the principal parts of a Laurent series of meromorphic functions with the same restrictions on the Nevanlinna characteristic.
Keywords: meromorphic function, multiple interpolation, a Laurent series, principal parts, the Nevanlinna characteristic.
Received August 9, 2016, published March 24, 2017
Document Type: Article
UDC: 517.53
MSC: 30E05; 30D35
Language: Russian
Citation: E. G. Rodikova, “Multiple interpolation for Nevanlinna type spaces”, Sib. Èlektron. Mat. Izv., 14 (2017), 264–273
Citation in format AMSBIB
\Bibitem{Rod17}
\by E.~G.~Rodikova
\paper Multiple interpolation for Nevanlinna type spaces
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 264--273
\mathnet{http://mi.mathnet.ru/semr783}
\crossref{https://doi.org/10.17377/semi.2017.14.024}
Linking options:
  • https://www.mathnet.ru/eng/semr783
  • https://www.mathnet.ru/eng/semr/v14/p264
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024