Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2009, Volume 6, Pages 505–509 (Mi semr78)  

Research papers

A note on $\sigma(*)$-rings and their extensions

V. K. Bhat, Neetu Kumari

School of Mathematics, SMVD University, Katra, India
References:
Abstract: Let $R$ be an associative ring with identity $1\neq0$, and $\sigma$ an endomorphism of $R$. We recall $\sigma(*)$ property on $R$ (i.e. $a\sigma(a)\in P(R)$ implies $a\in P(R)$ for $a\in R$, where $P(R)$ is the prime radical of $R$). Also recall that a ring $R$ is said to be $2$-primal if and only if the prime radical $P(R)$ and nil radical are same, i.e. if the prime radical is a completely semiprime ideal. It can be seen that a $\sigma(*)$ ring is a $2$-primal ring.
Let $R$ be a ring and $\sigma$ an automorphism of $R$. Then we know that $\sigma$ can be extended to an automorphism of the skew polynomial ring $R[x;\sigma]$. In this paper we show that if $R$ is a Noetherian ring and $\sigma$ is an automorphism of $R$ such that $R$ is a $\sigma(*)$-ring, then $R[x;\sigma]$ is also a $\sigma(*)$-ring.
Keywords: minimal prime, prime radical, automorphism, $\sigma(*)$-ring.
Received August 6, 2009, published November 27, 2009
Bibliographic databases:
Document Type: Article
UDC: 512.55
MSC: 16N40, 16P40, 16S36
Language: English
Citation: V. K. Bhat, Neetu Kumari, “A note on $\sigma(*)$-rings and their extensions”, Sib. Èlektron. Mat. Izv., 6 (2009), 505–509
Citation in format AMSBIB
\Bibitem{BhaKum09}
\by V.~K.~Bhat, Neetu Kumari
\paper A~note on $\sigma(*)$-rings and their extensions
\jour Sib. \`Elektron. Mat. Izv.
\yr 2009
\vol 6
\pages 505--509
\mathnet{http://mi.mathnet.ru/semr78}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586701}
Linking options:
  • https://www.mathnet.ru/eng/semr78
  • https://www.mathnet.ru/eng/semr/v6/p505
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :65
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024