Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 190–198
DOI: https://doi.org/10.17377/semi.2017.14.019
(Mi semr778)
 

This article is cited in 3 scientific papers (total in 3 papers)

Computational mathematics

Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons

A. S. Popov

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, pr. Akad. Lavrent'eva, 6, 630090, Novosibirsk, Russia
Full-text PDF (461 kB) Citations (3)
References:
Abstract: An algorithm of searching for the best (in a sense) cubature formulas on a sphere that are invariant under the transformations of the symmetry groups of regular polyhedrons is described. This algorithm is applied to find parameters of all the best cubature formulas of this symmetry type up to the 35th order of accuracy.
Keywords: numerical integration, invariant cubature formulas, invariant polynomials, symmetry groups, rotation groups, regular polyhedrons.
Received January 27, 2017, published March 9, 2017
Document Type: Article
UDC: 519.644
MSC: 65D32
Language: Russian
Citation: A. S. Popov, “Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons”, Sib. Èlektron. Mat. Izv., 14 (2017), 190–198
Citation in format AMSBIB
\Bibitem{Pop17}
\by A.~S.~Popov
\paper Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 190--198
\mathnet{http://mi.mathnet.ru/semr778}
\crossref{https://doi.org/10.17377/semi.2017.14.019}
Linking options:
  • https://www.mathnet.ru/eng/semr778
  • https://www.mathnet.ru/eng/semr/v14/p190
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :56
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024