Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 98–111
DOI: https://doi.org/10.17377/semi.2017.14.011
(Mi semr765)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical logic, algebra and number theory

On recurrence relation in the problem of enumeration of finite posets

V. I. Rodionov

Udmurt State University, ul. Universitetskaya, 1, 426034, Izhevsk, Russia
Full-text PDF (178 kB) Citations (2)
References:
Abstract: In the previous paper of the author the formula reduced the count of the number $T_0(n)$ of posets defined on $n$-set to the calculation of the numbers $W(p_1,\ldots,p_k)$ of posets of a special form has been proved ($p_1+\ldots+p_k=n$). In present paper we obtain the relations of recurrent nature connecting the individual values of $W(p_1,\ldots,p_k)$ among themselves. As a result of these relations the partially folded formula for the number $T_0(n)$ is obtained.
Keywords: graph enumeration, poset, finite topology.
Received October 1, 2016, published February 10, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.175
MSC: 05C30
Language: Russian
Citation: V. I. Rodionov, “On recurrence relation in the problem of enumeration of finite posets”, Sib. Èlektron. Mat. Izv., 14 (2017), 98–111
Citation in format AMSBIB
\Bibitem{Rod17}
\by V.~I.~Rodionov
\paper On recurrence relation in the problem of enumeration of finite posets
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 98--111
\mathnet{http://mi.mathnet.ru/semr765}
\crossref{https://doi.org/10.17377/semi.2017.14.011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3610858}
\zmath{https://zbmath.org/?q=an:1357.05061}
Linking options:
  • https://www.mathnet.ru/eng/semr765
  • https://www.mathnet.ru/eng/semr/v14/p98
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :54
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024