Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2017, Volume 14, Pages 112–124
DOI: https://doi.org/10.17377/semi.2017.14.012
(Mi semr758)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical logic, algebra and number theory

On maximal graphical partitions

V. A. Baransky, T. A. Senchonok

Ural Federal University, pr. Lenina, 51, 620083, Ekaterinburg, Russia
Full-text PDF (622 kB) Citations (3)
References:
Abstract: A partition of an integer $m$ is a sequence of nonnegative integers in nonincreasing order whose sum is equal to $m$. The length of a partition is the number of its nonzero parts. The set of all graphical partitions of $2m$, for a given $m$, is an order ideal of the lattice of all partitions of $2m$. We find new characterization of maximal graphical partitions and the number of maximal graphical partitions of length $n$. For each graphical partition $\lambda$ of integer $2m$ we construct maximal graphical partition $\mu$ of integer $2m$ with the same rank, which is dominate $\lambda$; also we find an algorithm that builds a sequence of elementary transformations from $\mu$ to $\lambda$.
Keywords: graph, lattice, integer partition, graphical partition, Ferrer's diagram.
Received September 1, 2016, published February 10, 2017
Bibliographic databases:
Document Type: Article
UDC: 519.178
MSC: 05A17
Language: Russian
Citation: V. A. Baransky, T. A. Senchonok, “On maximal graphical partitions”, Sib. Èlektron. Mat. Izv., 14 (2017), 112–124
Citation in format AMSBIB
\Bibitem{BarSen17}
\by V.~A.~Baransky, T.~A.~Senchonok
\paper On maximal graphical partitions
\jour Sib. \`Elektron. Mat. Izv.
\yr 2017
\vol 14
\pages 112--124
\mathnet{http://mi.mathnet.ru/semr758}
\crossref{https://doi.org/10.17377/semi.2017.14.012}
Linking options:
  • https://www.mathnet.ru/eng/semr758
  • https://www.mathnet.ru/eng/semr/v14/p112
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :92
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024