Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 1207–1218
DOI: https://doi.org/10.17377/semi.2016.13.094
(Mi semr744)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

The local case in Aschbacher theorem for linear and unitary groups

A. A. Galtab, D. O. Revinacb

a Sobolev Institute of Mathematics, 4 Acad. Koptyug avenue, 630090, Novosibirsk, Russia
b Novosibirsk State University, 2 Pirogova Street, 630090, Novosibirsk, Russia
c Department of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. China
Full-text PDF (200 kB) Citations (1)
References:
Abstract: Our main result completes the investigation began in [Siberian Mathematical Journal, V. 55, №2, 2014, 239–245] for linear and unitary groups. We consider the subgroups $H$ in a linear or a unitary group $G$ over a finite field such that $O_r(H)\not\nleqslant Z(G)$ for some prime $r$. We obtain a refinement of the well-known Aschbacher theorem on subgroups of classical groups for this case. More precisely, we prove that if $G=\mathrm{GL}_n^\eta(q)$, $\eta\in\{+,-\}$, $H\leqslant G$, $O_r(H)\nleqslant Z(G)$ for some prime $r$ then one of the following cases holds:
  • $H$ is contained in some element of Aschbacher classes $\mathcal{C}_1(G)$$\mathcal{C}_4(G)$;
  • $n=r^\gamma$ for a positive integer $\gamma$, $q\equiv\eta\pmod r$, $H$ is contained in the normalizer $N$ of an $r$-subgroup of symplectic type of $G$, $O_r(H)\leqslant O_r(N)$, and one of the following statements holds:
    • $r=2$, $q\equiv-\eta\pmod4$ $N=(\mathbb{Z}_{q-\eta}\circ2_\delta^{1+2\gamma}).\mathrm{O}^\delta_{2\gamma}(2)$, $\delta\in\{+,-\}$;
    • $N=(\mathbb{Z}_{q-\eta}\circ r^{1+2\gamma}).\mathrm{Sp}_{2\gamma}(r)$.
    Moreover, either $N\in\mathcal{C}_6(G)$ or $N$ is contained as a subgroup in some element of $\mathcal{C}_5(G)\cup\mathcal{C}_8(G)$.

In [Siberian Mathematical Journal, V. 55, №2, 2014, 239–245] the case $r\ne 2$ was considered. Now we prove the above result for $r=2$.
Keywords: linear groups, unitary groups, Aschbacher classes, radical $2$-subgroups.
Funding agency Grant number
CAS President's International Fellowship Initiative (PIFI) 2016VMA078
Исследования второго автора частично поддержаны Президентом Китайской академии наук, CAS President's International Fellowship Initiative (PIFI), Grant No. 2016VMA078.
Received November 16, 2016, published December 13, 2016
Bibliographic databases:
Document Type: Article
UDC: 512.542
MSC: 20G40 (20D06)
Language: Russian
Citation: A. A. Galt, D. O. Revin, “The local case in Aschbacher theorem for linear and unitary groups”, Sib. Èlektron. Mat. Izv., 13 (2016), 1207–1218
Citation in format AMSBIB
\Bibitem{GalRev16}
\by A.~A.~Galt, D.~O.~Revin
\paper The local case in Aschbacher theorem for linear and unitary groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 1207--1218
\mathnet{http://mi.mathnet.ru/semr744}
\crossref{https://doi.org/10.17377/semi.2016.13.094}
Linking options:
  • https://www.mathnet.ru/eng/semr744
  • https://www.mathnet.ru/eng/semr/v13/p1207
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :54
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024