|
Mathematical logic, algebra and number theory
Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$
A. A. Makhnevab, D. V. Paduchikha, M. M. Khamgokovac a Krasovskii Institute of Mathematics and Mechanics, ul. S.Kovalevskoi, 16,
620990, Ekaterinburg, Russia
b Uralskii Federalnii Universitet, ul. Mira, 19, 620002, Ekaterinburg, Russia
c Kabardino-Balkarskii University, ul. Mira, 16, 360000, Nalchik, Russia
Abstract:
Distance-regular graph $\Gamma$ with intersection array $\{117, 80, 18, 1; 1, 18, 80, 117\}$ is an $AT4$-graph. Antipodal quotient $\bar \Gamma$ has parameters $(378, 117, 36, 36)$. Both graphs have strongly regular neighbourhoods with parameters $(117, 36, 15, 9)$. In the work automorphisms of the said graphs are found. In particular, there exist graphs of rank 3 with parameters $(117, 36, 15, 9)$ and $(378, 117, 36, 36)$, and graph with intersection array $\{117, 80, 18, 1; 1, 18, 80, 117\}$ is not arc-transitive.
Keywords:
strongly regular graph, eigenvalue, automorphism of graph.
Received July 25, 2016, published November 8, 2016
Citation:
A. A. Makhnev, D. V. Paduchikh, M. M. Khamgokova, “Automorphisms of distance-regular graph with intersection array $\{117,80,18,1;1,18,80,117\}$”, Sib. Èlektron. Mat. Izv., 13 (2016), 972–986
Linking options:
https://www.mathnet.ru/eng/semr727 https://www.mathnet.ru/eng/semr/v13/p972
|
Statistics & downloads: |
Abstract page: | 251 | Full-text PDF : | 39 | References: | 46 |
|