Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 861–874
DOI: https://doi.org/10.17377/semi.2016.13.068
(Mi semr718)
 

This article is cited in 16 scientific papers (total in 17 papers)

Mathematical logic, algebra and number theory

$JSp$-cosemanticness and JSB property of Abelian groups

A. R. Yeshkeyev, O. I. Ulbrikht

Academician E.A. Buketov Karaganda State University, st. Universitetskaya, 28, 100028, Karaganda, Kazakhstan
References:
Abstract: The main purpose of this article is to study the model-theoretic properties of Abelian groups within Jonsson theories. The obtained results give us Jonsson analogs for the Schröder–Bernstein property and for the elementary classification of complete theories of Abelian groups.
Keywords: Jonsson theory, model companion, existentially closed model, perfectness, cosemanticness.
Received July 4, 2016, published October 14, 2016
Bibliographic databases:
Document Type: Article
UDC: 510.67
MSC: 03C60, 03C68, 03C10
Language: Russian
Citation: A. R. Yeshkeyev, O. I. Ulbrikht, “$JSp$-cosemanticness and JSB property of Abelian groups”, Sib. Èlektron. Mat. Izv., 13 (2016), 861–874
Citation in format AMSBIB
\Bibitem{EshUlb16}
\by A.~R.~Yeshkeyev, O.~I.~Ulbrikht
\paper $JSp$-cosemanticness and JSB property of Abelian groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 861--874
\mathnet{http://mi.mathnet.ru/semr718}
\crossref{https://doi.org/10.17377/semi.2016.13.068}
Linking options:
  • https://www.mathnet.ru/eng/semr718
  • https://www.mathnet.ru/eng/semr/v13/p861
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024