Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 734–739
DOI: https://doi.org/10.17377/semi.2016.13.058
(Mi semr708)
 

This article is cited in 4 scientific papers (total in 4 papers)

Differentical equations, dynamical systems and optimal control

On the dynamics of a class of Kolmogorov systems

R. Boukoucha

Department of Technology, Faculty of Technology, University of Bejaia, 06000 Bejaia, Algeria
Full-text PDF (146 kB) Citations (4)
References:
Abstract: In this paper we charaterize the integrability and the non-existence of limit cycles of Kolmogorov systems of the form
\begin{equation*} \left\{ \begin{array}{l} x^{\prime }=x\left( P\left( x,y\right) +\left( \frac{R\left( x,y\right) }{ S\left( x,y\right) }\right) ^{\lambda }\right) , \\ y^{\prime }=y\left( Q\left( x,y\right) +\left( \frac{R\left( x,y\right) }{ S\left( x,y\right) }\right) ^{\lambda }\right) , \end{array} \right. \end{equation*}
where $P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left( x,y\right) ,$ $ S\left( x,y\right) $ are homogeneous polynomials of degree $n,$ $n,$ $m,$ $a$ respectively and $\lambda \in \mathbb{Q} ^{\ast }$. Concrete example exhibiting the applicability of our result is introduced.
Keywords: Kolmogorov system, first integral, periodic orbits, limit cycle.
Received June 11, 2016, published September 20, 2016
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: English
Citation: R. Boukoucha, “On the dynamics of a class of Kolmogorov systems”, Sib. Èlektron. Mat. Izv., 13 (2016), 734–739
Citation in format AMSBIB
\Bibitem{Bou16}
\by R.~Boukoucha
\paper On the dynamics of a class of Kolmogorov systems
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 734--739
\mathnet{http://mi.mathnet.ru/semr708}
\crossref{https://doi.org/10.17377/semi.2016.13.058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407781100058}
Linking options:
  • https://www.mathnet.ru/eng/semr708
  • https://www.mathnet.ru/eng/semr/v13/p734
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:191
    Full-text PDF :48
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024