|
This article is cited in 4 scientific papers (total in 4 papers)
Differentical equations, dynamical systems and optimal control
On the dynamics of a class of Kolmogorov systems
R. Boukoucha Department of Technology, Faculty of Technology, University of Bejaia,
06000 Bejaia, Algeria
Abstract:
In this paper we charaterize the
integrability and the non-existence of
limit cycles of Kolmogorov systems of the form
\begin{equation*}
\left\{
\begin{array}{l}
x^{\prime }=x\left( P\left( x,y\right) +\left( \frac{R\left( x,y\right) }{
S\left( x,y\right) }\right) ^{\lambda }\right) , \\
y^{\prime }=y\left( Q\left( x,y\right) +\left( \frac{R\left( x,y\right) }{
S\left( x,y\right) }\right) ^{\lambda }\right) ,
\end{array}
\right.
\end{equation*}
where $P\left( x,y\right) ,$ $Q\left( x,y\right) ,$ $R\left( x,y\right) ,$ $
S\left( x,y\right) $ are homogeneous polynomials of degree $n,$ $n,$
$m,$ $a$ respectively and $\lambda \in
\mathbb{Q}
^{\ast }$. Concrete example exhibiting the applicability of our
result is introduced.
Keywords:
Kolmogorov system, first integral, periodic orbits, limit cycle.
Received June 11, 2016, published September 20, 2016
Citation:
R. Boukoucha, “On the dynamics of a class of Kolmogorov systems”, Sib. Èlektron. Mat. Izv., 13 (2016), 734–739
Linking options:
https://www.mathnet.ru/eng/semr708 https://www.mathnet.ru/eng/semr/v13/p734
|
Statistics & downloads: |
Abstract page: | 191 | Full-text PDF : | 48 | References: | 35 |
|