Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 664–693 (Mi semr703)  

This article is cited in 8 scientific papers (total in 8 papers)

Differentical equations, dynamical systems and optimal control

Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids

A. E. Mamontov, D. A. Prokudin

Lavrentyev Institute of Hydrodynamics, pr. Lavrent'eva, 15, 630090, Novosibirsk, Russia
Full-text PDF (272 kB) Citations (8)
References:
Abstract: We consider the steady boundary value problem which describes polytropic motion of a viscous compressible multifluid in a bounded domain of three-dimensional Euclidian space. We prove the existence of weak solutions to the problem.
Keywords: existence theorem, steady boundary value problem, viscous compressible multifluid, polytropic equation of state, effective viscous flux.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-08275_а
Received July 17, 2016, published August 17, 2016
Document Type: Article
UDC: 517.95
MSC: 35A05
Language: Russian
Citation: A. E. Mamontov, D. A. Prokudin, “Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Sib. Èlektron. Mat. Izv., 13 (2016), 664–693
Citation in format AMSBIB
\Bibitem{MamPro16}
\by A.~E.~Mamontov, D.~A.~Prokudin
\paper Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 664--693
\mathnet{http://mi.mathnet.ru/semr703}
Linking options:
  • https://www.mathnet.ru/eng/semr703
  • https://www.mathnet.ru/eng/semr/v13/p664
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024