Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 452–466
DOI: https://doi.org/10.17377/semi.2016.13.039
(Mi semr689)
 

This article is cited in 1 scientific paper (total in 1 paper)

Differentical equations, dynamical systems and optimal control

Nonlocal problems with an integral boundary condition for the differential equations of odd order

A. I. Kozhanovab, G. A. Lukinac

a Novosibirsk State University, ul. Pirogova, 2, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
c Mirny Polytechnic Institute (branch) of Ammosov North-Eastern Federal University, ul. Tikhonova, 5 korp. 1, 678170, Mirny, Russia
Full-text PDF (188 kB) Citations (1)
References:
Abstract: We study the solvability of nonlocal problems for equations
$$u_{ttt} + Au=f(x,t)$$
($0<T<+\infty$, $A$ — elliptic operator) with only two boundary conditions instead of three and with a special integral boundary condition. We prove the existence theorems for regular solutions and indicate a possible generalization of the obtained results.
Keywords: nonlocal problem, integral condition, odd order differential equation, regular solution, existence.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-06582_а
Received February 22, 2016, published June 1, 2016
Bibliographic databases:
Document Type: Article
UDC: 517.946
MSC: 35N99,35R99
Language: Russian
Citation: A. I. Kozhanov, G. A. Lukina, “Nonlocal problems with an integral boundary condition for the differential equations of odd order”, Sib. Èlektron. Mat. Izv., 13 (2016), 452–466
Citation in format AMSBIB
\Bibitem{KozLuk16}
\by A.~I.~Kozhanov, G.~A.~Lukina
\paper Nonlocal problems with an integral boundary condition for the differential equations of odd order
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 452--466
\mathnet{http://mi.mathnet.ru/semr689}
\crossref{https://doi.org/10.17377/semi.2016.13.039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3512694}
Linking options:
  • https://www.mathnet.ru/eng/semr689
  • https://www.mathnet.ru/eng/semr/v13/p452
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:381
    Full-text PDF :141
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024