Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 395–410
DOI: https://doi.org/10.17377/semi.2016.13.035
(Mi semr684)
 

This article is cited in 11 scientific papers (total in 11 papers)

Differentical equations, dynamical systems and optimal control

Domain decomposition method for a membrane with a delaminated thin rigid inclusion

E. M. Rudoyab, V. V. Shcherbakovab

a Lavrentyev Institute of Hydrodynamics of the Russian Academy of Sciences, pr. Lavrenyeva, 15, 630090, Novosibirsk, Russia
b Novosibirsk State University, ul. Pirogova, 2, 630090, Novosibirsk, Russia
References:
Abstract: The paper deals with the numerical solution of an equilibrium problem for an elastic membrane with a thin rigid inclusion. The thin inclusion is supposed to delaminate, therefore a crack between the inclusion and the membrane is considered. The boundary conditions for nonpenetration of the crack faces are fulfilled. We provide the relaxation of the problem and propose an iterative method for the numerical solution of the approximated problem. The method is based on a domain decomposition and the Uzawa algorithm for finding a saddle point of the Lagrangian. Examples of the numerical solution of the initial problem are presented.
Keywords: crack, thin rigid inclusion, nonpenetration condition, variational inequality, domain decomposition method, Uzawa algorithm.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation MD-3123.2015.1
The author is supported by the Grant of the President of the Russian Federation for state support of young Russian researchers (Grant No. MD-3123.2015.1).
Received March 10, 2016, published May 22, 2016
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: English
Citation: E. M. Rudoy, V. V. Shcherbakov, “Domain decomposition method for a membrane with a delaminated thin rigid inclusion”, Sib. Èlektron. Mat. Izv., 13 (2016), 395–410
Citation in format AMSBIB
\Bibitem{RudShc16}
\by E.~M.~Rudoy, V.~V.~Shcherbakov
\paper Domain decomposition method for a membrane with a delaminated thin rigid inclusion
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 395--410
\mathnet{http://mi.mathnet.ru/semr684}
\crossref{https://doi.org/10.17377/semi.2016.13.035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000407781100035}
Linking options:
  • https://www.mathnet.ru/eng/semr684
  • https://www.mathnet.ru/eng/semr/v13/p395
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:351
    Full-text PDF :88
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024