Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 341–351
DOI: https://doi.org/10.17377/semi.2016.13.029
(Mi semr678)
 

This article is cited in 7 scientific papers (total in 7 papers)

Mathematical logic, algebra and number theory

About Shunkov groups, saturated with linear and unitary groups of dimension 3

A. A. Shlepkin

Siberian Federal University, pr. Svobodny, 79, 660041, Krasnoyarsk, Russia
Full-text PDF (176 kB) Citations (7)
References:
Abstract: We prove that a Shunkov group saturated with simple linear and unitary groups of dimension $3$ over fields of odd orders has a periodic part isomorphic to $U_3(Q),$ or $L_3(Q)$ for some locally finite field $Q $ of odd characteristic.
Keywords: Shunkov group, groups, saturated with the set of groups.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1462.2014/K
Received January 30, 2015, published May 12, 2016
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 20K01
Language: Russian
Citation: A. A. Shlepkin, “About Shunkov groups, saturated with linear and unitary groups of dimension 3”, Sib. Èlektron. Mat. Izv., 13 (2016), 341–351
Citation in format AMSBIB
\Bibitem{Shl16}
\by A.~A.~Shlepkin
\paper About Shunkov groups, saturated with linear and unitary groups of dimension 3
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 341--351
\mathnet{http://mi.mathnet.ru/semr678}
\crossref{https://doi.org/10.17377/semi.2016.13.029}
Linking options:
  • https://www.mathnet.ru/eng/semr678
  • https://www.mathnet.ru/eng/semr/v13/p341
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024