|
Discrete mathematics and mathematical cybernetics
About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$
P. A. Gein Ural Federal University, pr. Lenina, 51, 62083, Ekaterinburg, Russia
Abstract:
Let $P(G, x)$ be the chromatic polynomial of a graph $G$. A graph $G$ is called chromatically unique if for any graph $H,\, P(G, x) = P(H, x)$ implies that $G$ and $H$ are isomorphic. In this parer we show that full tripartite graph $K(s, s - 1, s - k)$ is chromatically unique if $k\geq 1$ and $s - k\geq 2$.
Keywords:
graph, chromatic polynomial, chromatic uniqueness, complete tripartite graph.
Received April 15, 2016, published May 10, 2016
Citation:
P. A. Gein, “About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$”, Sib. Èlektron. Mat. Izv., 13 (2016), 331–337
Linking options:
https://www.mathnet.ru/eng/semr676 https://www.mathnet.ru/eng/semr/v13/p331
|
Statistics & downloads: |
Abstract page: | 148 | Full-text PDF : | 38 | References: | 34 |
|