Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 331–337
DOI: https://doi.org/10.17377/semi.2016.13.027
(Mi semr676)
 

Discrete mathematics and mathematical cybernetics

About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$

P. A. Gein

Ural Federal University, pr. Lenina, 51, 62083, Ekaterinburg, Russia
References:
Abstract: Let $P(G, x)$ be the chromatic polynomial of a graph $G$. A graph $G$ is called chromatically unique if for any graph $H,\, P(G, x) = P(H, x)$ implies that $G$ and $H$ are isomorphic. In this parer we show that full tripartite graph $K(s, s - 1, s - k)$ is chromatically unique if $k\geq 1$ and $s - k\geq 2$.
Keywords: graph, chromatic polynomial, chromatic uniqueness, complete tripartite graph.
Received April 15, 2016, published May 10, 2016
Bibliographic databases:
Document Type: Article
UDC: 519.175
MSC: 05C30
Language: Russian
Citation: P. A. Gein, “About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$”, Sib. Èlektron. Mat. Izv., 13 (2016), 331–337
Citation in format AMSBIB
\Bibitem{Gei16}
\by P.~A.~Gein
\paper About chromatic uniqueness of complete tripartite graph $K(s, s - 1, s - k)$, where $k\geq 1$ and $s - k\geq 2$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 331--337
\mathnet{http://mi.mathnet.ru/semr676}
\crossref{https://doi.org/10.17377/semi.2016.13.027}
Linking options:
  • https://www.mathnet.ru/eng/semr676
  • https://www.mathnet.ru/eng/semr/v13/p331
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :38
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024