Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 318–330
DOI: https://doi.org/10.17377/semi.2016.13.026
(Mi semr675)
 

This article is cited in 3 scientific papers (total in 3 papers)

Discrete mathematics and mathematical cybernetics

On enumeration of posets defined on finite set

V. I. Rodionov

Udmurt State University, ul. Universitetskaya, 1, 426034, Izhevsk, Russia
Full-text PDF (190 kB) Citations (3)
References:
Abstract: If $T_0(n)$ is the number of partial orders (labeled $T_0$-topologies) defined on a finite set of $n$ elements then the formula hold
$$ T_0(n)=\sum\limits_{p_1+\ldots+p_k=n} (-1)^{n-k}\,\frac{n!}{p_1!\ldots p_k!}\,W(p_1,\ldots,p_k), $$
where the summation is over all ordered sets $(p_1,\ldots,p_k)$ of positive integers such that $p_1+\ldots+p_k=n$. The number $W(p_1,\ldots,p_k)$ is the number of partial orders of a special form. If $D_k$ is the dihedral group of order $2k$ then $W(p_{\pi(1)},\ldots,p_{\pi(k)})=W(p_1,\ldots,p_k)$ for all $\pi\in D_k$. We studied the complemented partial orders.
Keywords: graph enumeration, poset, finite topology.
Received April 15, 2016, published May 10, 2016
Bibliographic databases:
Document Type: Article
UDC: 519.175
MSC: 05C30
Language: Russian
Citation: V. I. Rodionov, “On enumeration of posets defined on finite set”, Sib. Èlektron. Mat. Izv., 13 (2016), 318–330
Citation in format AMSBIB
\Bibitem{Rod16}
\by V.~I.~Rodionov
\paper On enumeration of posets defined on finite set
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 318--330
\mathnet{http://mi.mathnet.ru/semr675}
\crossref{https://doi.org/10.17377/semi.2016.13.026}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3506895}
\zmath{https://zbmath.org/?q=an:1341.05127}
Linking options:
  • https://www.mathnet.ru/eng/semr675
  • https://www.mathnet.ru/eng/semr/v13/p318
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :68
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024