Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 300–304
DOI: https://doi.org/10.17377/semi.2016.13.024
(Mi semr673)
 

Differentical equations, dynamical systems and optimal control

Singular solutions of one-dimensional SH wave equation in porous media

A. E. Kholmurodov, G. Toshmurodova

Karshi State University, Karshi city, street Kuchabag-17, 180100, Republic of Uzbekistan, Kashkadarya region
References:
Abstract: Singular solutions of the IS equation for SH waves in an elasticporous medium are obtained. For expansion coefficients of wave fields a system of Volterra integral equations of the second kind are obtained. It is shwn that at vanishing of proposity these coefficients are transformed into well known expressions for the coefficients of expansion of wave fields for an elastic model.
Keywords: hyperbolic system, the porous medium, SH waves, the friction coefficient.
Received March 28, 2016, published May 4, 2016
Bibliographic databases:
Document Type: Article
UDC: 550.344
MSC: 35Q99
Language: Russian
Citation: A. E. Kholmurodov, G. Toshmurodova, “Singular solutions of one-dimensional SH wave equation in porous media”, Sib. Èlektron. Mat. Izv., 13 (2016), 300–304
Citation in format AMSBIB
\Bibitem{KhoTos16}
\by A.~E.~Kholmurodov, G.~Toshmurodova
\paper Singular solutions of one-dimensional SH wave equation in porous media
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 300--304
\mathnet{http://mi.mathnet.ru/semr673}
\crossref{https://doi.org/10.17377/semi.2016.13.024}
Linking options:
  • https://www.mathnet.ru/eng/semr673
  • https://www.mathnet.ru/eng/semr/v13/p300
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024