Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2016, Volume 13, Pages 148–153
DOI: https://doi.org/10.17377/semi.2016.13.013
(Mi semr663)
 

This article is cited in 5 scientific papers (total in 5 papers)

Mathematical logic, algebra and number theory

Undecidability of elementary theory of Rogers semilattices in analytical hierarchy

M. V. Dorzhieva

Novosibirsk State University, st. Pirogova, 2 630090, Novosibirsk, Russia
Full-text PDF (145 kB) Citations (5)
References:
Abstract: We prove that the elementary theory of any nontrivial Rogers semilattice for analytical sets of bounded complexity is hereditarily undecidable. We also prove some results on the existence of minimal numberings in such lattices.
Keywords: analitycal hierarchy, computable numberings, minimal numberings, Rogers semilattices.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-31278_мол_а
Received April 10, 2014, published March 16, 2016
Bibliographic databases:
Document Type: Article
UDC: 512.5
MSC: 13A99
Language: Russian
Citation: M. V. Dorzhieva, “Undecidability of elementary theory of Rogers semilattices in analytical hierarchy”, Sib. Èlektron. Mat. Izv., 13 (2016), 148–153
Citation in format AMSBIB
\Bibitem{Dor16}
\by M.~V.~Dorzhieva
\paper Undecidability of elementary theory of Rogers semilattices in analytical hierarchy
\jour Sib. \`Elektron. Mat. Izv.
\yr 2016
\vol 13
\pages 148--153
\mathnet{http://mi.mathnet.ru/semr663}
\crossref{https://doi.org/10.17377/semi.2016.13.013}
Linking options:
  • https://www.mathnet.ru/eng/semr663
  • https://www.mathnet.ru/eng/semr/v13/p148
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024