Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 901–909
DOI: https://doi.org/10.17377/semi.2015.12.076
(Mi semr639)
 

Mathematical logic, algebra and number theory

Almost Lie nilpotent varieties of associative rings

O. B. Finogenova

Ural Federal University, ul. Lenina, 51, 620083, Yekaterinburg, Russia
References:
Abstract: A variety of associative rings is called Lie nilpotent if it satisfies the identity $[\dots[[x_1, x_2],\dots,x_n]=0$ for some positive integer $n$, where $[x, y]=xy-yx$. We study almost Lie nilpotent varieties, i.e., minimal elements in the set of all varieties that are not Lie nilpotent. We reduce the case of rings to the case of algebras over a finite prime field by proving that every almost Lie nilpotent variety of rings satisfies the identity $px=0$ for some prime integer $p$. We also show that for every finite base field $F$ it is sufficient to study all prime almost Lie nilpotent varieties algebras over any infinite extension of $F$ to find all such varieties of $F$-algebras. The nonprime almost Lie nilpotent varieties of algebras over positive characteristic fields, both infinite and finite, were described by the author in an earlier paper.
Keywords: Variety of associative algebras, identities of the associated Lie algebra, Lie nilpotency, Engel property, prime variety.
Received November 13, 2015, published December 3, 2015
Document Type: Article
UDC: 519.23
MSC: 62F12
Language: Russian
Citation: O. B. Finogenova, “Almost Lie nilpotent varieties of associative rings”, Sib. Èlektron. Mat. Izv., 12 (2015), 901–909
Citation in format AMSBIB
\Bibitem{Fin15}
\by O.~B.~Finogenova
\paper Almost Lie nilpotent varieties of associative rings
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 901--909
\mathnet{http://mi.mathnet.ru/semr639}
\crossref{https://doi.org/10.17377/semi.2015.12.076}
Linking options:
  • https://www.mathnet.ru/eng/semr639
  • https://www.mathnet.ru/eng/semr/v12/p901
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :43
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024