Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2009, Volume 6, Pages 199–210 (Mi semr63)  

This article is cited in 1 scientific paper (total in 1 paper)

Research papers

Quantum Polya theorem

A. N. Bondarenko, V. A. Dedok

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (767 kB) Citations (1)
References:
Abstract: In this paper we discuss return probability properties of quantum random walk on the line. In the classical case this property is well known as the Polya theorem. We study in detail not only usually discussed “Hadamar walk”. In the general case quantum random walk depends on parameter $\theta$ ($0\le\theta\le\pi$). It was shown that in the most of cases when $0<\theta<\pi$ quantum random walk is weak localized and recurrent and the return probability tends to $0$ with the speed $1/t$. Other cases are also studied and described.
Keywords: quantum random walk, return probability, Polya theorem.
Received March 16, 2009, published September 10, 2009
Bibliographic databases:
Document Type: Article
UDC: 519.214
MSC: 60F99
Language: Russian
Citation: A. N. Bondarenko, V. A. Dedok, “Quantum Polya theorem”, Sib. Èlektron. Mat. Izv., 6 (2009), 199–210
Citation in format AMSBIB
\Bibitem{BonDed09}
\by A.~N.~Bondarenko, V.~A.~Dedok
\paper Quantum Polya theorem
\jour Sib. \`Elektron. Mat. Izv.
\yr 2009
\vol 6
\pages 199--210
\mathnet{http://mi.mathnet.ru/semr63}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586686}
Linking options:
  • https://www.mathnet.ru/eng/semr63
  • https://www.mathnet.ru/eng/semr/v6/p199
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024