Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 766–776
DOI: https://doi.org/10.17377/semi.2015.12.062
(Mi semr625)
 

This article is cited in 1 scientific paper (total in 1 paper)

Probability theory and mathematical statistics

About conditions of gaussian approximation of kernel estimates for distribution density

A. S. Kartashova, A. I. Sakhanenkob

a Novosibirsk State University, st. Pirogova, 2, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Full-text PDF (181 kB) Citations (1)
References:
Abstract: Recently E. Gine, V. Koltchinskii and L. Sakhanenko (2004) investigated asymptotical behavior of a random variable of the form $\sqrt{n h_n} \sup\nolimits_{t \in \mathbf{R}} \left | \psi(t) (f_n(t) - \mathbf{E} f_n (t)) \right | $ with some weight function $\psi(t)$, where $f_n$ is a kernel density estimator. The proof of their limit theorems consists of a large number of technically difficult stages and uses more than ten bulky assumptions. In this work we show that under simpler and wider conditions the above stated problem is reduced to the study of asymptotics of a supremum of some special Gaussian process. The obtained result can be used in further investigation of functionals based on empirical processes and kernel density estimators. Our proof is based on the well-known approximation of Komlos, Major and Tusnady (1975).
Keywords: kernel density estimators, brownian motion, brownian bridge, KMT approximation, function of bounded variation.
Funding agency Grant number
Russian Foundation for Basic Research 03-01-11111
Received August 29, 2015, published November 5, 2015
Document Type: Article
UDC: 519.21
MSC: 62G07
Language: Russian
Citation: A. S. Kartashov, A. I. Sakhanenko, “About conditions of gaussian approximation of kernel estimates for distribution density”, Sib. Èlektron. Mat. Izv., 12 (2015), 766–776
Citation in format AMSBIB
\Bibitem{KarSak15}
\by A.~S.~Kartashov, A.~I.~Sakhanenko
\paper About conditions of gaussian approximation of kernel estimates for distribution density
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 766--776
\mathnet{http://mi.mathnet.ru/semr625}
\crossref{https://doi.org/10.17377/semi.2015.12.062}
Linking options:
  • https://www.mathnet.ru/eng/semr625
  • https://www.mathnet.ru/eng/semr/v12/p766
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:243
    Full-text PDF :74
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024