Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 639–650
DOI: https://doi.org/10.17377/semi.2015.12.051
(Mi semr613)
 

Probability theory and mathematical statistics

Large deviation principle for integral functionals of a Markov process

A. V. Logachova, E. I. Prokopenkob

a Novosibirsk State University, 2 Pirogova Str., 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
References:
Abstract: In this paper it was obtained the large deviation principle for the sequence of random processes $Y_n(t)=\frac{1}{n}\int\limits_0^{nt}h(X(u))du,$ where $X(u)$ is a homogeneous Markov process, $h(x)$ is a continuous function, $t \in [0,1]$. In particular, it was proved the large deviation principle for the integral of the telegraph signal process.
Keywords: Large deviations, Markov process, telegraph signal process.
Received March 23, 2015, published September 22, 2015
Document Type: Article
UDC: 519.21
MSC: 60F10, 60J25
Language: Russian
Citation: A. V. Logachov, E. I. Prokopenko, “Large deviation principle for integral functionals of a Markov process”, Sib. Èlektron. Mat. Izv., 12 (2015), 639–650
Citation in format AMSBIB
\Bibitem{LogPro15}
\by A.~V.~Logachov, E.~I.~Prokopenko
\paper Large deviation principle for integral functionals of a Markov process
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 639--650
\mathnet{http://mi.mathnet.ru/semr613}
\crossref{https://doi.org/10.17377/semi.2015.12.051}
Linking options:
  • https://www.mathnet.ru/eng/semr613
  • https://www.mathnet.ru/eng/semr/v12/p639
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024