Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 610–624
DOI: https://doi.org/10.17377/semi.2015.12.049
(Mi semr611)
 

This article is cited in 3 scientific papers (total in 3 papers)

Differentical equations, dynamical systems and optimal control

The local stability of a population dynamics model in conditions of deleterious effects

A. S. Balandin, T. L. Sabatulina

Perm National Research Polytechnic University, Komsomolskiy pr., 29, 614990, Perm, Russia
Full-text PDF (873 kB) Citations (3)
References:
Abstract: We study the local stability of an integro-differential system with aftereffect, which is a model of dynamics of a population in conditions of deleterious effects.
Keywords: system of linear functional differential equations, exponential stability, uniform stability, aftereffect, population dynamics.
Received July 31, 2015, published September 22, 2015
Document Type: Article
UDC: 517.929
MSC: 34K20
Language: Russian
Citation: A. S. Balandin, T. L. Sabatulina, “The local stability of a population dynamics model in conditions of deleterious effects”, Sib. Èlektron. Mat. Izv., 12 (2015), 610–624
Citation in format AMSBIB
\Bibitem{BalSab15}
\by A.~S.~Balandin, T.~L.~Sabatulina
\paper The local stability of a population dynamics model in conditions of deleterious effects
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 610--624
\mathnet{http://mi.mathnet.ru/semr611}
\crossref{https://doi.org/10.17377/semi.2015.12.049}
Linking options:
  • https://www.mathnet.ru/eng/semr611
  • https://www.mathnet.ru/eng/semr/v12/p610
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :59
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024