Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 577–591
DOI: https://doi.org/10.17377/semi.2015.12.047
(Mi semr610)
 

This article is cited in 3 scientific papers (total in 3 papers)

Geometry and topology

On a morphism of compactifications of moduli scheme of vector bundles

N. V. Timofeeva

Yaroslavl State University, ul. Sovetskaya, 14, 150000, Yaroslavl, Russia
Full-text PDF (208 kB) Citations (3)
References:
Abstract: A morphism of nonreduced Gieseker–Maruyama functor (of semistable coherent torsion-free sheaves) on the surface to the nonreduced functor of admissible semistable pairs with the same Hilbert polynomial, is constructed. This leads to the morphism of moduli schemes with possibly nonreduced scheme structures. As usually, we study subfunctors corresponding to main components of moduli schemes.
Keywords: moduli space, semistable coherent sheaves, moduli functor, algebraic surface.
Received November 4, 2014, published September 18, 2015
Document Type: Article
UDC: 512.722,512.723
MSC: 14J60,14D20
Language: English
Citation: N. V. Timofeeva, “On a morphism of compactifications of moduli scheme of vector bundles”, Sib. Èlektron. Mat. Izv., 12 (2015), 577–591
Citation in format AMSBIB
\Bibitem{Tim15}
\by N.~V.~Timofeeva
\paper On a morphism of compactifications of moduli scheme of vector bundles
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 577--591
\mathnet{http://mi.mathnet.ru/semr610}
\crossref{https://doi.org/10.17377/semi.2015.12.047}
Linking options:
  • https://www.mathnet.ru/eng/semr610
  • https://www.mathnet.ru/eng/semr/v12/p577
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :46
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024