Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 223–231
DOI: https://doi.org/10.17377/semi.2015.12.018
(Mi semr581)
 

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical logic, algebra and number theory

On Schur $3$-groups

G. K. Ryabov

Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
Full-text PDF (534 kB) Citations (3)
References:
Abstract: Let $G$ be a finite group. An $S$-ring $\mathcal{A}$ over $G$ is a subring of the group ring $\mathbb{Z}G$ that has a linear basis associated with a special partition of $G$. About 40 years ago R. Pöschel suggested the problem which can be formulated as follows: for which group $G$ every $S$-ring $\mathcal{A}$ over it is schurian, i.e. the partition of $G$ corresponding to $\mathcal{A}$ consists of the orbits of the one point stabilizer of a permutation group in $Sym(G)$ that contains a regular subgroup isomorphic to $G$. The main result of the paper says that such $G$ can not be non-abelian $p$-group, where $p$ is an odd prime. In fact, modulo known results, it was sufficient to show that for every $n\geq3$ there exists a non-schurian $S$-ring over the group $M_{3^n}=\langle a,b\;|\:a^{3^{n-1}}=b^3=e,a^b=a^{3^{n-2}+1}\rangle$.
Keywords: Permutation groups, Cayley schemes, $S$-rings, Schur groups.
Received January 22, 2015, published April 10, 2015
Document Type: Article
UDC: 512.542.3
MSC: 20B30,05E30
Language: English
Citation: G. K. Ryabov, “On Schur $3$-groups”, Sib. Èlektron. Mat. Izv., 12 (2015), 223–231
Citation in format AMSBIB
\Bibitem{Rya15}
\by G.~K.~Ryabov
\paper On Schur $3$-groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 223--231
\mathnet{http://mi.mathnet.ru/semr581}
\crossref{https://doi.org/10.17377/semi.2015.12.018}
Linking options:
  • https://www.mathnet.ru/eng/semr581
  • https://www.mathnet.ru/eng/semr/v12/p223
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024