Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 210–222
DOI: https://doi.org/10.17377/semi.2015.12.017
(Mi semr580)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

On infinite Alperin groups

B. M. Veretennikov

Ural Federal University, Ekaterinburg, Mira 19, 620002, Ekaterinburg, Russia
Full-text PDF (564 kB) Citations (1)
References:
Abstract: A group $G$ is called Alperin group if any 2-generated subgroup of $G$ has a cyclic commutator subgroup. We prove the existence of Alperin torsion-free groups and Alperin groups, generated by involutions, with free abelian second commutator subgroups of any finite and countable rank. Also we prove that nilpotent torsion-free Alperin group has nilpotence class $\leq 2$. The last theorem of the article implies that the following condition is insufficient for a group $G$ to be Alperin group:
$$\text{for any } a,b \in G \text{ commutator } [a,b,b] \text{ is a power of } [a,b].$$
Keywords: Alperin group, commutator subgroup, generators and defining relations, Hopfian group, torsion-free group.
Received February 18, 2015, published March 20, 2015
Document Type: Article
UDC: 512.54
MSC: 20B05
Language: Russian
Citation: B. M. Veretennikov, “On infinite Alperin groups”, Sib. Èlektron. Mat. Izv., 12 (2015), 210–222
Citation in format AMSBIB
\Bibitem{Ver15}
\by B.~M.~Veretennikov
\paper On infinite Alperin groups
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 210--222
\mathnet{http://mi.mathnet.ru/semr580}
\crossref{https://doi.org/10.17377/semi.2015.12.017}
Linking options:
  • https://www.mathnet.ru/eng/semr580
  • https://www.mathnet.ru/eng/semr/v12/p210
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024