Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2015, Volume 12, Pages 80–91
DOI: https://doi.org/10.17377/semi.2015.12.007
(Mi semr570)
 

Computational mathematics

Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms

A. K. Bazzaevab, I. D. Tsopanovb

a North-Ossetia State University, Vladikavkaz
b Vladikavkaz Institute of Management
References:
Abstract: For a fractional diffusion equation with a fractional derivative in lowest terms with Robin boundary conditions, locally one-dimensional difference schemes are considered and their stability and convergence are proved.
Keywords: locally one-dimensional difference scheme, slow diffusion equation, Caputo fractional derivative, maximum principle, stability and convergence of difference schemes, Robin boundary conditions.
Received November 18, 2014, published February 2, 2015
Document Type: Article
UDC: 519.633
MSC: 65M06
Language: Russian
Citation: A. K. Bazzaev, I. D. Tsopanov, “Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms”, Sib. Èlektron. Mat. Izv., 12 (2015), 80–91
Citation in format AMSBIB
\Bibitem{BazTso15}
\by A.~K.~Bazzaev, I.~D.~Tsopanov
\paper Locally one-dimensional difference schemes for the fractional diffusion equation with a fractional derivative in lowest terms
\jour Sib. \`Elektron. Mat. Izv.
\yr 2015
\vol 12
\pages 80--91
\mathnet{http://mi.mathnet.ru/semr570}
\crossref{https://doi.org/10.17377/semi.2015.12.007}
Linking options:
  • https://www.mathnet.ru/eng/semr570
  • https://www.mathnet.ru/eng/semr/v12/p80
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :102
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024