Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2009, Volume 6, Pages 49–52 (Mi semr56)  

Short communications

Torsion and curvature for the $6$-commutator

A. Dzhumadil'daev

Institute of Mathematics, Almaty, Kazakhstan
References:
Abstract: Torsion and curvature for $6$-commutator on $Vect(2)$ are calculated. It is proved that $6$-curvature ($6$-torsion) can be presented as a exterior product of usual curvature (usual torsion) by some $4$-form.
Keywords: $N$-commutator, torsion, curvature, Bianchi identities.
Received February 1, 2009, published February 17, 2009
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: 58A10, 58A15, 70G45
Language: English
Citation: A. Dzhumadil'daev, “Torsion and curvature for the $6$-commutator”, Sib. Èlektron. Mat. Izv., 6 (2009), 49–52
Citation in format AMSBIB
\Bibitem{Dzh09}
\by A.~Dzhumadil'daev
\paper Torsion and curvature for the $6$-commutator
\jour Sib. \`Elektron. Mat. Izv.
\yr 2009
\vol 6
\pages 49--52
\mathnet{http://mi.mathnet.ru/semr56}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586679}
Linking options:
  • https://www.mathnet.ru/eng/semr56
  • https://www.mathnet.ru/eng/semr/v6/p49
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :90
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024