Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2009, Volume 6, Pages 26–48 (Mi semr55)  

This article is cited in 1 scientific paper (total in 1 paper)

Research papers

Metabelian Lie $Q$-algebras

E. Yu. Daniyarova

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Science
Full-text PDF (770 kB) Citations (1)
References:
Abstract: This is the second paper in the series of three, which are in the series of papers, the aim of which is to construct algebraic geometry over metabelian Lie algebras. For investigation of quasiidentity of coordinate algebras we introduce metabelian Lie $Q$-algebras. We have come to the characterization of such algebras by several ways. We prove the theorem of embedding an arbitrary $Q$-algebra into the direct sum of primary $Q$-algebras.
Keywords: matabelian Lie algebra over a field, $Q$-algebra, $U$-algebra, primary algebra, semiprimary algebra, primary decomposition, diophantine pojective vatiety over a field.
Received April 23, 2007, published February 12, 2009
Bibliographic databases:
Document Type: Article
UDC: 512.554.3
MSC: 17B99
Language: Russian
Citation: E. Yu. Daniyarova, “Metabelian Lie $Q$-algebras”, Sib. Èlektron. Mat. Izv., 6 (2009), 26–48
Citation in format AMSBIB
\Bibitem{Dan09}
\by E.~Yu.~Daniyarova
\paper Metabelian Lie $Q$-algebras
\jour Sib. \`Elektron. Mat. Izv.
\yr 2009
\vol 6
\pages 26--48
\mathnet{http://mi.mathnet.ru/semr55}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2586678}
Linking options:
  • https://www.mathnet.ru/eng/semr55
  • https://www.mathnet.ru/eng/semr/v6/p26
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :51
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024