Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 975–980 (Mi semr542)  

This article is cited in 1 scientific paper (total in 1 paper)

Geometry and topology

Infinite series of Kishino type knots

Ph. G. Korablev

Chelyabinsk State University
Full-text PDF (168 kB) Citations (1)
References:
Abstract: We construct an infinite series of nontrivial virtual knots $\mathcal{K}_n$, $n \geqslant 2$. Each knot in this series is a connected sum of trivial virtual knots. We prove that for each $n$ the genus of $\mathcal{K}_n$ is equal to $n$. As a consequence, two knots $\mathcal{K}_i$ and $\mathcal{K}_j$ are non-equivalent iff $i\neq j$.
Keywords: Kishino knot, knot in thickened surface, virtual knot, genus of the knot.
Received December 3, 2014, published December 13, 2014
Document Type: Article
UDC: 515.162.8
MSC: 57M27
Language: Russian
Citation: Ph. G. Korablev, “Infinite series of Kishino type knots”, Sib. Èlektron. Mat. Izv., 11 (2014), 975–980
Citation in format AMSBIB
\Bibitem{Kor14}
\by Ph.~G.~Korablev
\paper Infinite series of Kishino type knots
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 975--980
\mathnet{http://mi.mathnet.ru/semr542}
Linking options:
  • https://www.mathnet.ru/eng/semr542
  • https://www.mathnet.ru/eng/semr/v11/p975
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:154
    Full-text PDF :66
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024