Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 958–965 (Mi semr540)  

This article is cited in 2 scientific papers (total in 2 papers)

Discrete mathematics and mathematical cybernetics

Upper bounds on the permanent of multidimensional $(0,1)$-matrices

A. A. Taranenkoab

a Novosibirsk State University, Pirogova, 2, 630090, Novosibirsk, Russia
b Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
Full-text PDF (469 kB) Citations (2)
References:
Abstract: The permanent of a multidimensional matrix is the sum of products of entries over all diagonals.
By Minc's conjecture, there exists a reachable upper bound on the permanent of $2$-dimensional $(0,1)$-matrices. In this paper we obtain some generalizations of Minc's conjecture to the multidimensional case. For this purpose we prove and compare several bounds on the permanent of multidimensional $(0,1)$-matrices.
Most estimates can be used for matrices with nonnegative bounded entries.
Keywords: permanent, multidimensional matrix, $(0,1)$-matrix.
Received October 31, 2014, published December 8, 2014
Document Type: Article
UDC: 519.143.3
MSC: 05A20
Language: English
Citation: A. A. Taranenko, “Upper bounds on the permanent of multidimensional $(0,1)$-matrices”, Sib. Èlektron. Mat. Izv., 11 (2014), 958–965
Citation in format AMSBIB
\Bibitem{Tar14}
\by A.~A.~Taranenko
\paper Upper bounds on the permanent of multidimensional $(0,1)$-matrices
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 958--965
\mathnet{http://mi.mathnet.ru/semr540}
Linking options:
  • https://www.mathnet.ru/eng/semr540
  • https://www.mathnet.ru/eng/semr/v11/p958
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :79
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024