|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 891–895
(Mi semr533)
|
|
|
|
Geometry and topology
On two classes of dense 2-generator subgroups in $\mathbb C$
A. V. Tetenov, K. G. Kamalutdinov, D. A. Vaulin Gorno-Altaysk State University, 1 Lenkin str., 649000, Gorno-Altaysk, Russia
Abstract:
We consider dense 2-generator multiplicative subgroups in $\mathbb C$ and show that for each point $z\in\mathbb{C} $ the set of limit values for the arguments of the powers of each generator at the point $z$ is either finite or is $[-\pi,\pi]$.
Keywords:
Kronecker sets, dense groups, continued fractions.
Received October 22, 2014, published December 1, 2014
Citation:
A. V. Tetenov, K. G. Kamalutdinov, D. A. Vaulin, “On two classes of dense 2-generator subgroups in $\mathbb C$”, Sib. Èlektron. Mat. Izv., 11 (2014), 891–895
Linking options:
https://www.mathnet.ru/eng/semr533 https://www.mathnet.ru/eng/semr/v11/p891
|
|