Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 887–890 (Mi semr532)  

Geometry and topology

On Willmore Surfaces of Revolution in $\mathbb{R}^3$

S. M. Cherosovaa, E. I. Shamaevba

a Research Institute of Mathematics of North-Eastern Federal University named after M. K. Amosov
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: In this paper, we study Euler–Lagrange equation for the Willmore functional in the case of surfaces of revolution. Explicit solutions are constructed in terms of elliptic functions.
Keywords: Willmore surface, exact solution.
Received November 14, 2014, published December 1, 2014
Document Type: Article
UDC: 514.74
MSC: 52C05
Language: Russian
Citation: S. M. Cherosova, E. I. Shamaev, “On Willmore Surfaces of Revolution in $\mathbb{R}^3$”, Sib. Èlektron. Mat. Izv., 11 (2014), 887–890
Citation in format AMSBIB
\Bibitem{CheSha14}
\by S.~M.~Cherosova, E.~I.~Shamaev
\paper On Willmore Surfaces of Revolution in $\mathbb{R}^3$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 887--890
\mathnet{http://mi.mathnet.ru/semr532}
Linking options:
  • https://www.mathnet.ru/eng/semr532
  • https://www.mathnet.ru/eng/semr/v11/p887
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024