Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 811–822 (Mi semr525)  

This article is cited in 6 scientific papers (total in 6 papers)

Discrete mathematics and mathematical cybernetics

The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices

D. S. Malyshevab

a Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Avenue, Nizhny Novgorod, 603950, Russia
b National Research University Higher School of Economics, 25/12 Bolshaja Pecherskaja Ulitsa, Nizhny Novgorod, 603155, Russia
Full-text PDF (542 kB) Citations (6)
References:
Abstract: We obtain a complete complexity dichotomy for the edge 3-colorability within the family of hereditary classes defined by forbidden induced subgraphs on at most 6 vertices and having at most two 6-vertex forbidden induced structures.
Keywords: computational complexity, edge 3-colorability, hereditary class, efficient algorithm.
Received November 30, 2013, published November 12, 2014
Document Type: Article
UDC: 519.178
MSC: 05C15, 05С85
Language: English
Citation: D. S. Malyshev, “The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices”, Sib. Èlektron. Mat. Izv., 11 (2014), 811–822
Citation in format AMSBIB
\Bibitem{Mal14}
\by D.~S.~Malyshev
\paper The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 811--822
\mathnet{http://mi.mathnet.ru/semr525}
Linking options:
  • https://www.mathnet.ru/eng/semr525
  • https://www.mathnet.ru/eng/semr/v11/p811
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:255
    Full-text PDF :69
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024