Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 752–758 (Mi semr520)  

This article is cited in 3 scientific papers (total in 3 papers)

Mathematical logic, algebra and number theory

On the universal algebras with identical derived objects (congruences, algebraic sets)

A. G. Pinus

Novosibirsk State Technical University
Full-text PDF (461 kB) Citations (3)
References:
Abstract: We described the algebras with common basic sets which have the same congruences or algebraic sets.
Keywords: universal algebras, derived structures, conqruences, algebraic sets.
Received June 26, 2014, published October 14, 2014
Document Type: Article
UDC: 519.48
MSC: 08A05
Language: Russian
Citation: A. G. Pinus, “On the universal algebras with identical derived objects (congruences, algebraic sets)”, Sib. Èlektron. Mat. Izv., 11 (2014), 752–758
Citation in format AMSBIB
\Bibitem{Pin14}
\by A.~G.~Pinus
\paper On the universal algebras with identical derived objects (congruences, algebraic sets)
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 752--758
\mathnet{http://mi.mathnet.ru/semr520}
Linking options:
  • https://www.mathnet.ru/eng/semr520
  • https://www.mathnet.ru/eng/semr/v11/p752
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024