|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 548–556
(Mi semr508)
|
|
|
|
Mathematical logic, algebra and number theory
On a finite $2,3$-generated group of period $12$
Andrei V. Zavarnitsineab a Sobolev Institute of Mathematics, 4, Koptyug av.,
630090, Novosibirsk, Russia
b Novosibirsk State University, 2, Pirogova st.,
630090, Novosibirsk, Russia
Abstract:
Using calculations in computer algebra systems along with some theoretic results, we construct the largest finite group of period $12$ generated by an element of order $2$ and an element of order $3$. In particular, we prove that this group has order $2^{66}\cdot3^7$.
Keywords:
periodic groups, Burnside problem.
Received April 14, 2014, 21.07.2014
Citation:
Andrei V. Zavarnitsine, “On a finite $2,3$-generated group of period $12$”, Sib. Èlektron. Mat. Izv., 11 (2014), 548–556
Linking options:
https://www.mathnet.ru/eng/semr508 https://www.mathnet.ru/eng/semr/v11/p548
|
Statistics & downloads: |
Abstract page: | 180 | Full-text PDF : | 61 | References: | 40 |
|