Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 451–456 (Mi semr500)  

This article is cited in 2 scientific papers (total in 2 papers)

Discrete mathematics and mathematical cybernetics

On the multidimensional permanent and $q$-ary designs

V. N. Potapovab

a Sobolev Institute of Mathematics, pr. Koptyuga, 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, Pirogova st., 2, 630090, Novosibirsk, Russia
Full-text PDF (520 kB) Citations (2)
References:
Abstract: An $H(n,q,w,t)$ design is a collection of some $(n-w)$-faces of the hypercube $Q^n_q$ that perfectly pierce all $(n-t)$-faces $(n\geq w>t)$. An $A(n,q,w,t)$ design is a collection of some $(n-t)$-faces of $Q^n_q$ that perfectly cover all $(n-w)$-faces. The numbers of H-designs and A-designs are expressed in terms of the multidimensional permanent. Several constructions of H-designs and A-designs are given and the existence of $H(2^{t+1},s2^t,2^{t+1}-1,2^{t+1}-2)$ designs is proven for all $s,t\geq 1$.
Keywords: Steiner system, H-design, perfect matching, clique matching, MDS code, permanent.
Received April 6, 2014, published June 16, 2014
Document Type: Article
UDC: 519.14
MSC: 05B05, 05C65
Language: Russian
Citation: V. N. Potapov, “On the multidimensional permanent and $q$-ary designs”, Sib. Èlektron. Mat. Izv., 11 (2014), 451–456
Citation in format AMSBIB
\Bibitem{Pot14}
\by V.~N.~Potapov
\paper On the multidimensional permanent and $q$-ary designs
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 451--456
\mathnet{http://mi.mathnet.ru/semr500}
Linking options:
  • https://www.mathnet.ru/eng/semr500
  • https://www.mathnet.ru/eng/semr/v11/p451
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:280
    Full-text PDF :61
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024