Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2004, Volume 1, Pages 47–63 (Mi semr5)  

This article is cited in 15 scientific papers (total in 15 papers)

Research papers

Convergence and convergence rate to fractional Brownian motion for weighted random sums

T. Konstantopoulosa, A. Sakhanenkob

a Department of Mathematics, University of Patras
b Ugra State University
References:
Abstract: We consider infinite sums of weighted i.i.d. random variables, with finite variance and arbitrary distribution, and derive a necessary and sufficient conditions for the weak convergence (in function space with uniform topology) of normalized sums to fractional Brownian motion (FBM). We consider also convergence rates questions. Using the embedding suggested by the Komlós–Major–Tusnády strong approximations method, we derive (under certain conditions on the weights) estimates for the quality of the functional approximation to FBM.
Received September 25, 2004, published October 12, 2004
Bibliographic databases:
Document Type: Article
UDC: 519.214
Language: English
Citation: T. Konstantopoulos, A. Sakhanenko, “Convergence and convergence rate to fractional Brownian motion for weighted random sums”, Sib. Èlektron. Mat. Izv., 1 (2004), 47–63
Citation in format AMSBIB
\Bibitem{KonSak04}
\by T.~Konstantopoulos, A.~Sakhanenko
\paper Convergence and convergence rate to fractional Brownian motion for weighted random sums
\jour Sib. \`Elektron. Mat. Izv.
\yr 2004
\vol 1
\pages 47--63
\mathnet{http://mi.mathnet.ru/semr5}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2132447}
\zmath{https://zbmath.org/?q=an:1079.60025}
Linking options:
  • https://www.mathnet.ru/eng/semr5
  • https://www.mathnet.ru/eng/semr/v1/p47
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024