Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 362–371 (Mi semr494)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematical logic, algebra and number theory

On unit group of a finite local rings of characteristic $p$

E. V. Zhuravlev

Altai State University, Barnaul
Full-text PDF (540 kB) Citations (1)
References:
Abstract: We describe the structure of the unit group of a commutative finite local rings of characteristic $p$ with Jacobson radical $J$ such that ${\dim_F J/J^2=3}$, ${\dim_F J^2/J^3=1}$, ${\dim_F J^3=1}$, $J^4=(0)$ and $F=R/J\cong GF(p^r)$, the finite field of $p^r$ elements.
Keywords: local rings, finite rings, unit group of a ring.
Received March 15, 2014, published May 23, 2014
Document Type: Article
UDC: 512.55
MSC: 16P10,16W20
Language: Russian
Citation: E. V. Zhuravlev, “On unit group of a finite local rings of characteristic $p$”, Sib. Èlektron. Mat. Izv., 11 (2014), 362–371
Citation in format AMSBIB
\Bibitem{Zhu14}
\by E.~V.~Zhuravlev
\paper On unit group of a finite local rings of characteristic $p$
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 362--371
\mathnet{http://mi.mathnet.ru/semr494}
Linking options:
  • https://www.mathnet.ru/eng/semr494
  • https://www.mathnet.ru/eng/semr/v11/p362
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :47
    References:46
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024