Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 327–333 (Mi semr490)  

Probability theory and mathematical statistics

Support of diffusion on a cluster Poisson space

O. V. Pugachev

N. E. Bauman Moscow State Technical University
References:
Abstract: We prove that in a space of cluster Poisson configurations on $\mathbb R^d$, under certain conditions, the set of configurations with multiple points has zero $C_{1,2}$ Sobolev capacity. Hence stationary diffusions on this space are supported by the subset of configurations without multiple points.
Keywords: cluster Poisson configurations, capacity, diffusion.
Received January 28, 2014, published May 14, 2014
Document Type: Article
UDC: 514.132
Language: Russian
Citation: O. V. Pugachev, “Support of diffusion on a cluster Poisson space”, Sib. Èlektron. Mat. Izv., 11 (2014), 327–333
Citation in format AMSBIB
\Bibitem{Pug14}
\by O.~V.~Pugachev
\paper Support of diffusion on a cluster Poisson space
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 327--333
\mathnet{http://mi.mathnet.ru/semr490}
Linking options:
  • https://www.mathnet.ru/eng/semr490
  • https://www.mathnet.ru/eng/semr/v11/p327
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:158
    Full-text PDF :51
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024