Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 220–228 (Mi semr483)  

This article is cited in 1 scientific paper (total in 1 paper)

Computational mathematics

Solving of contact mechanics problem using h-adaptive finite element method

Yu. O. Yashchuka, I. I. Prokopyshynb

a Ivan Franko National University of L'viv
b Ya. S. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, NAS Ukraine, L'vov
Full-text PDF (533 kB) Citations (1)
References:
Abstract: We present an effective methodology of solving contact mechanics problems. The main feature is combining iterative domain decomposition method with h-adaptive finite element method, which were developed earlier by the authors. We demonstrate the usability of a new algorithm applying it to a test problem. The resulting mesh reveals a singularity near the contact zone.
Keywords: finite element method, boundary element method, mesh refinement, contact mechanics, domain decomposition.
Received October 18, 2013, published March 15, 2014
Document Type: Article
UDC: 517.958,519.6,539.3
Language: Russian
Citation: Yu. O. Yashchuk, I. I. Prokopyshyn, “Solving of contact mechanics problem using h-adaptive finite element method”, Sib. Èlektron. Mat. Izv., 11 (2014), 220–228
Citation in format AMSBIB
\Bibitem{YasPro14}
\by Yu.~O.~Yashchuk, I.~I.~Prokopyshyn
\paper Solving of contact mechanics problem using h-adaptive finite element method
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 220--228
\mathnet{http://mi.mathnet.ru/semr483}
Linking options:
  • https://www.mathnet.ru/eng/semr483
  • https://www.mathnet.ru/eng/semr/v11/p220
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :60
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024