Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 165–184 (Mi semr478)  

This article is cited in 3 scientific papers (total in 4 papers)

Discrete mathematics and mathematical cybernetics

Lower bounds on the formula complexity of a linear Boolean function

K. L. Rychkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (587 kB) Citations (4)
References:
Abstract: Given proof of the lower boundaries of the computational complexity of the linear Boolean function $x_1+\ldots+x_n=1 \pmod 2$ by formulas in the basis $\{\vee,\wedge,^-\}$. It is proved that for $n=6$ this complexity is not less than 40. Earlier, this result was obtained Cherukhin with use of computer calculations [1]. Given a simplified proof of the lower bound, published at [2]: for even $n\neq2^k$ the complexity is not less than $n^2+2$, for odd $n\geq5$ the complexity is not less than $n^2+3$.
Keywords: lower bounds on the formula complexity, formulas, $\pi$-schemes.
Received January 30, 2014, published March 2, 2014
Document Type: Article
UDC: 519.714
MSC: 03D15
Language: Russian
Citation: K. L. Rychkov, “Lower bounds on the formula complexity of a linear Boolean function”, Sib. Èlektron. Mat. Izv., 11 (2014), 165–184
Citation in format AMSBIB
\Bibitem{Ryc14}
\by K.~L.~Rychkov
\paper Lower bounds on the formula complexity of a linear Boolean function
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 165--184
\mathnet{http://mi.mathnet.ru/semr478}
Linking options:
  • https://www.mathnet.ru/eng/semr478
  • https://www.mathnet.ru/eng/semr/v11/p165
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024