Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 130–141 (Mi semr476)  

Geometry and topology

Stability of integral persistence diagrams

A. E. Abzhanova, Ya. V. Bazaikinb

a Nazarbayev University Research and Innovation System
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We define concept of integral persistent diagram which involve geometrical characteristics of excursion sets and prove stability of such diagrams.
Keywords: computational topology, persistence, stability.
Received September 18, 2013, published February 17, 2014
Document Type: Article
UDC: 519.6+515.146
MSC: 55-04
Language: Russian
Citation: A. E. Abzhanov, Ya. V. Bazaikin, “Stability of integral persistence diagrams”, Sib. Èlektron. Mat. Izv., 11 (2014), 130–141
Citation in format AMSBIB
\Bibitem{AbzBaz14}
\by A.~E.~Abzhanov, Ya.~V.~Bazaikin
\paper Stability of integral persistence diagrams
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 130--141
\mathnet{http://mi.mathnet.ru/semr476}
Linking options:
  • https://www.mathnet.ru/eng/semr476
  • https://www.mathnet.ru/eng/semr/v11/p130
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:364
    Full-text PDF :127
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024