Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2014, Volume 11, Pages 26–51 (Mi semr469)  

This article is cited in 7 scientific papers (total in 7 papers)

Differentical equations, dynamical systems and optimal control

Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior

S. A. Sazhenkovab, E. V. Sazhenkovac, A. V. Zubkovab

a Novosibirsk State University, Pirogova st., 2, 630090, Novosibirsk, Russia
b Lavrentyev Institute for Hydrodynamics, Siberian Division of the Russian Academy of Sciences, pr. Acad. Lavrentyeva 15, 630090, Novosibirsk, Russia
c Novosibirsk State University of Economics and Management, Institute for Applied Informatics, Kamenskaya st., 56, 630099, Novosibirsk, Russia
Full-text PDF (597 kB) Citations (7)
References:
Abstract: The linearized model of joint motion of an elastic porous body and a two-phase viscous compressible liquid in pores is considered. The reciprocal deformation of liquid phases is governed by Rakhmatullin’s scheme. It is assumed that the porous body has a periodic geometry and that the ratio of the pattern periodic cell and the diameter of the entire mechanical system is a small parameter in the model. The homogenization procedure, i.e. a limiting passage as the small parameter tends to zero, is fulfilled. As the result, we find that the limiting distributions of displacements of the media serve as a solution of a well-posed initial-boundary value problem for the model of linear monophasic viscoelastic material with memory of shape. Moreover, coefficients of this newly constructed model arise from microstructure, more precisely, they are uniquely defined by data in the original model. Homogenization procedure is based on the method of two-scale convergence and is mathematically rigorously justified.
Keywords: two-phase fluid in pores, homogenization of periodic structure, two-scale convergence, viscoelastic body.
Received October 15, 2013, published January 30, 2014
Document Type: Article
UDC: 517.958
MSC: 35B27, 35D30, 74F10
Language: English
Citation: S. A. Sazhenkov, E. V. Sazhenkova, A. V. Zubkova, “Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior”, Sib. Èlektron. Mat. Izv., 11 (2014), 26–51
Citation in format AMSBIB
\Bibitem{SazSazZub14}
\by S.~A.~Sazhenkov, E.~V.~Sazhenkova, A.~V.~Zubkova
\paper Small perturbations of two-phase fluid in pores: effective macroscopic monophasic viscoelastic behavior
\jour Sib. \`Elektron. Mat. Izv.
\yr 2014
\vol 11
\pages 26--51
\mathnet{http://mi.mathnet.ru/semr469}
Linking options:
  • https://www.mathnet.ru/eng/semr469
  • https://www.mathnet.ru/eng/semr/v11/p26
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:250
    Full-text PDF :74
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024