Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2013, Volume 10, Pages 727–732 (Mi semr465)  

This article is cited in 1 scientific paper (total in 1 paper)

Probability theory and mathematical statistics

Stability of the partial sum process of residuals in a multiple linear regression model

I. S. Borisovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (475 kB) Citations (1)
References:
Abstract: We discuss a refinement of the MacNeill's result (1978) on limit behavior of the so-called residual process of a linear regression model. We study stability of the process with respect to $L_2$-variations of the regressor. As an example, we consider the case when the regressor is a smooth function of the variational series based on $n$ identically distributed observations not necessarily independent.
Keywords: linear regression, random regressor, residual process, least-square estimator, variational series.
Received November 27, 2013, published December 30, 2013
Document Type: Article
UDC: 519.21
MSC: 62F12
Language: Russian
Citation: I. S. Borisov, “Stability of the partial sum process of residuals in a multiple linear regression model”, Sib. Èlektron. Mat. Izv., 10 (2013), 727–732
Citation in format AMSBIB
\Bibitem{Bor13}
\by I.~S.~Borisov
\paper Stability of the partial sum process of residuals in a multiple linear regression model
\jour Sib. \`Elektron. Mat. Izv.
\yr 2013
\vol 10
\pages 727--732
\mathnet{http://mi.mathnet.ru/semr465}
Linking options:
  • https://www.mathnet.ru/eng/semr465
  • https://www.mathnet.ru/eng/semr/v10/p727
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024