Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2013, Volume 10, Pages 583–590 (Mi semr452)  

This article is cited in 3 scientific papers (total in 3 papers)

Geometry and topology

Amenability of Closed Subgroups and Orlicz Spaces

Ya A. Kopylovab

a Sobolev Institute of Mathematics, Prospekt Akad. Koptyuga 4, 630090, Novosibirsk, Russia
b Novosibirsk State University, ul. Pirogova 2, 630090, Novosibirsk, Russia
Full-text PDF (534 kB) Citations (3)
References:
Abstract: We prove that a closed subgroup $H$ of a second countable locally compact group $G$ is amenable if and only if its left regular representation on an Orlicz space $L^\Phi(G)$ for some $\Delta_2$-regular $N$-function $\Phi$ almost has invariant vectors. We also show that a noncompact second countable locally compact group $G$ is amenable if and ony if the first cohomology space $H^1(G,L^\Phi(G))$ is non-Hausdorff for some $\Delta_2$-regular $N$-function $\Phi$.
Keywords: locally compact group, amenable group, second countable group, closed subgroup, $N$-function, Orlicz space, 1-cohomology.
Document Type: Article
UDC: 512.546.3
MSC: 22D10,46E30
Language: English
Citation: Ya A. Kopylov, “Amenability of Closed Subgroups and Orlicz Spaces”, Sib. Èlektron. Mat. Izv., 10 (2013), 583–590
Citation in format AMSBIB
\Bibitem{Kop13}
\by Ya~A.~Kopylov
\paper Amenability of Closed Subgroups and Orlicz Spaces
\jour Sib. \`Elektron. Mat. Izv.
\yr 2013
\vol 10
\pages 583--590
\mathnet{http://mi.mathnet.ru/semr452}
Linking options:
  • https://www.mathnet.ru/eng/semr452
  • https://www.mathnet.ru/eng/semr/v10/p583
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024