Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2013, Volume 10, Pages 566–582 (Mi semr451)  

Geometry and topology

Mean asymmetry of polynomials on compact homogeneous spaces

V. M. Gichev

Omsk Branch of Sobolev Institute of Mathematics, ul. Pevtsova, 13, 644099, Omsk, Russia
References:
Abstract: Let $M=G/H$ be a homogeneous space of a compact Lie group $G$, ${{\mathcal E}}$ be an $G$-invariant finite dimensional subspace of $L^2_{\mathord{\mathbb{R}}}(M)$, and ${\mathord{\mathcal{S}}}$ be the unit sphere in it. Set $\eta_a(u)=\int_M\left(u_+^a(x)-u_-^a(x)\right)\,dx$, where $u_+(x)=\max\{u(x),0\}$, $u_-(x)=-\min\{u(x),0\}$. We consider the asymptotic behavior of the variance of the random variable $\eta_a$ as $a\to\infty$ or $\dim{{\mathcal E}}\to\infty$ for the uniform distribution of $u$ in ${\mathord{\mathcal{S}}}$. For instance, if ${{\mathord{\mathcal{E}}}}$ is the space of trigonometrical polynomials of degree less or equal to $n$, then $\mathop{\mathrm{Var}}(\eta_a)\sim \frac{A}{n}$ as $n\to\infty$.
Keywords: compact homogeneous space, sums of Laplace–Beltrami eigenfunctions, defect of symmetry.
Received April 16, 2013, published September 27, 2013
Document Type: Article
UDC: 517.58
MSC: 43A85
Language: English
Citation: V. M. Gichev, “Mean asymmetry of polynomials on compact homogeneous spaces”, Sib. Èlektron. Mat. Izv., 10 (2013), 566–582
Citation in format AMSBIB
\Bibitem{Gic13}
\by V.~M.~Gichev
\paper Mean asymmetry of polynomials on compact homogeneous spaces
\jour Sib. \`Elektron. Mat. Izv.
\yr 2013
\vol 10
\pages 566--582
\mathnet{http://mi.mathnet.ru/semr451}
Linking options:
  • https://www.mathnet.ru/eng/semr451
  • https://www.mathnet.ru/eng/semr/v10/p566
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024