|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2013, Volume 10, Pages 566–582
(Mi semr451)
|
|
|
|
Geometry and topology
Mean asymmetry of polynomials on compact homogeneous spaces
V. M. Gichev Omsk Branch of Sobolev Institute of Mathematics,
ul. Pevtsova, 13, 644099, Omsk, Russia
Abstract:
Let $M=G/H$ be a homogeneous space of a compact Lie group $G$, ${{\mathcal E}}$ be an $G$-invariant finite dimensional subspace of $L^2_{\mathord{\mathbb{R}}}(M)$, and ${\mathord{\mathcal{S}}}$ be the unit sphere in it. Set $\eta_a(u)=\int_M\left(u_+^a(x)-u_-^a(x)\right)\,dx$, where $u_+(x)=\max\{u(x),0\}$, $u_-(x)=-\min\{u(x),0\}$. We consider the asymptotic behavior of the variance of the random variable $\eta_a$ as $a\to\infty$ or $\dim{{\mathcal E}}\to\infty$ for the uniform distribution of $u$ in ${\mathord{\mathcal{S}}}$. For instance, if ${{\mathord{\mathcal{E}}}}$ is the space of trigonometrical polynomials of degree less or equal to $n$, then $\mathop{\mathrm{Var}}(\eta_a)\sim \frac{A}{n}$ as $n\to\infty$.
Keywords:
compact homogeneous space, sums of Laplace–Beltrami eigenfunctions, defect of symmetry.
Received April 16, 2013, published September 27, 2013
Citation:
V. M. Gichev, “Mean asymmetry of polynomials on compact homogeneous spaces”, Sib. Èlektron. Mat. Izv., 10 (2013), 566–582
Linking options:
https://www.mathnet.ru/eng/semr451 https://www.mathnet.ru/eng/semr/v10/p566
|
|