|
Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2013, Volume 10, Pages 551–557
(Mi semr446)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Mathematical logic, algebra and number theory
Subextensions for a permutation $\mathrm{PSL}_2(q)$-module
Andrei V. Zavarnitsine Sobolev Institute of Mathematics, 4, Koptyug av., 630090, Novosibirsk, Russia
Abstract:
Using cohomological methods, we solve the problem of embedding $\mathrm{SL}_2(q)$ into the permutation wreath product for the permutation $\mathrm{PSL}_2(q)$-module in characteristic $2$ that arises from the action on the projective line. We also prove some useful auxiliary results.
Keywords:
finite simple groups, permutation module, group cohomology.
Received May 7, 2013, published September 5, 2013
Citation:
Andrei V. Zavarnitsine, “Subextensions for a permutation $\mathrm{PSL}_2(q)$-module”, Sib. Èlektron. Mat. Izv., 10 (2013), 551–557
Linking options:
https://www.mathnet.ru/eng/semr446 https://www.mathnet.ru/eng/semr/v10/p551
|
|