Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Èlektron. Mat. Izv.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskie Èlektronnye Matematicheskie Izvestiya [Siberian Electronic Mathematical Reports], 2013, Volume 10, Pages 491–503 (Mi semr442)  

This article is cited in 2 scientific papers (total in 2 papers)

Computational mathematics

Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh

A. I. Zadorin, N. A. Zadorin

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
Full-text PDF (514 kB) Citations (2)
References:
Abstract: Euler and Gregory quadrature rules for a function with a boundary layer component are investigated. The integrand corresponds to a solution of a singular perturbed problem. It is proved that Euler and Gregory quadrature rules on a mesh, dence in a boundary layer, have a fourth order of an accuracy uniformly in a boundary layer growth of the integrand. Results of numerical experiments are discussed.
Keywords: function, boundary layer, Euler quadrature formula, piecewise uniform mesh, uniform accuracy.
Received June 10, 2013, published August 1, 2013
Document Type: Article
UDC: 519.644
MSC: 65D32,65L50
Language: Russian
Citation: A. I. Zadorin, N. A. Zadorin, “Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh”, Sib. Èlektron. Mat. Izv., 10 (2013), 491–503
Citation in format AMSBIB
\Bibitem{ZadZad13}
\by A.~I.~Zadorin, N.~A.~Zadorin
\paper Euler quadrature rule for a function with a boundary layer component on a picewise uniform mesh
\jour Sib. \`Elektron. Mat. Izv.
\yr 2013
\vol 10
\pages 491--503
\mathnet{http://mi.mathnet.ru/semr442}
Linking options:
  • https://www.mathnet.ru/eng/semr442
  • https://www.mathnet.ru/eng/semr/v10/p491
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024